
Building Killer Web Applications

Dave King

December 6th, 2011



Once Upon a Time
• “I need a program that does...”



My ‘Education’

• Lots of ‘server-side’ work

• TAs compiled my code, seeing if it worked against a text file

• Native application development
• Windows Sound API
• Directing UNIX Process Output to Files
• Compilers and Type-Checkers



The New World

• Jeff Atwood (Coding Horror) in 2009: “All programming is
web programming.”

• As a developer, the web is now the delivery mechanism for
your code

• How are web applications built and improved?



We Use These Every Day

• Web applications...
• Web pages
• Dynamic behavior
• Persist information between visits



Youtube



Delicious



Rackspace Webmail



Rackspace Cloud Control Panel



How Do You Build That?

• Three Main Parts



The Client

• Display content with the browser

• Handle presentation and interaction
• JavaScript and CSS



The Server

• Handle requests from the user

• Serve content to the browser



The Data Store

• Persist data

• Usually this is stored in relational databases
• MySQL, PostgreSQL, Microsoft SQL, Oracle, SQLite

• Sometimes the data is stored beneath a service layer
• External APIs



Small is Easy

• Lots of good technology out there that makes building a small
application pretty easy

• How do you grow?

• How do you improve the experience?

• What are you likely to see as you go from five users to five
thousand?



Rackspace

• Cloud: 110,000+ customers

• Email & Apps: 2.5 million mailboxes (and growing)



Making The Client Awesome

• The client interacts with the website through the browser

• Client-side behavior: JavaScript

• Client-side presentation: CSS



Minimize HTTP Requests

• Hit a web page, start grabbing content from the server

• HTTP requests are slow

• Ideally, browser should make one request per type of content



Sprites

• Merge images together into one, access through CSS offsets



Minimize HTTP Requests

• At Rackspace: Cloud Control Panel

• On application startup: combine CSS/JavaScript/images
together



Combine and Minify CSS/JavaScript

• Strip whitespace and send content gzipped to client

• Less time to get content, less time to start rendering the web
page



JavaScript

• JavaScript is the language of the web

• But lots of things that make it hard to develop and maintain
• DOM (interacting with the page) – every browser has its quirks
• Has some poorly thought out language features



Awesome JavaScript

• Use a DOM library that hides browser differences
• JQuery

• Use style checker
• jslint/jshint

• Write JavaScript like any other language
• We’ve had luck using an object-oriented style

• Write JavaScript unit tests
• QUnit
• Jasmine

• Use a build system (Google Closure)
• Closure compiler uses type annotations to guarantee strong

typing



Making the Server Awesome

• Web servers (‘web heads’) process incoming requests

• Lots of ‘glue’ at the web server level

• Translate from database model into presentation model

• Application Server level: Apache (mod php),
Tomcat/Glassfish (Java), Mongrel (Rails)



Minimize Backend Calls

• Be really careful when the server needs to call external
information

• It’s very easy to create performance problems by doing
backend queries in for loops!

• n+1 problems
• “First you get all the customer ids, and then for each customer

id, you make a query...”
• SQL Subselects are bad



Minimize Backend Calls

• At Rackspace: Log Search



Minimize Backend Calls

• Incoming messages hit many servers, each server generates a
log line

• Querying log lines for matching messages
• ... and fetching all message information for each matching log

lines (slow)
• ... and displaying these as possibly incomplete messages (fast)



Avoid Long Lived Connections

• Web servers have a number of request handlers (thread pool)

• If your server can’t keep up with incoming requests, it will fall
over

• Nobody likes this :(



Avoid Long Lived Connections

• File downloads are a common long-lived connection

• At Rackspace: streaming attachment downloads
• User has a mailbox at one datacenter, web servers in another

datacenter
• Serve attachment downloads from the same datacenter as the

user’s mailbox
• Web servers aren’t tied up by long-lived download threads



Making the Data Store Awesome

• The data store contains most of the value that customers are
trying to get out of your application

• Easy for early database design decisions to become horrible



Be Careful with ORMs

• ORMs (Object-Relation Mappers) map tables to objects
• Hibernate (Java), NHibernate (C#)
• Active Record (Ruby on Rails)

• Makes it easy to...
• write database-interacting code
• get to your value-add faster
• introduce extremely non-performant behavior

• Eventually, you will have to understand what your ORM is
doing under the hood



Database Slaves

• Reads and writes have different usage patterns

• Most traditional applications are heavy on reads, light of
writes

• Make writes to the master DB, reads go to the slaves



Database Slaves

• At Rackspace: Spam Policy in the Control Panel

• Incoming mail needs to check a user’s spam policy to route it
correctly

• Is it a whitelist (never check spam)?
• Is it a blacklist (always mark as spam)?

• Heavy incoming volume, lots of queries



Database Slaves

• Master/Read Slaves per datacenter

• Control Panel writes to the master

• Servers handling incoming mail query the read slaves



Non-Relational Data Stores

• ‘NoSQL’: non-relational data stores

• Key-value stores (redis, memcached)

• Document-based stores (mongoDB)

• Block storage (Hadoop)

• Direct relationship between code interacting with the data
and how the data is represented



Non-Relational Data Stores

• Rackspace Email & Apps Control Panel

• NHibernate ORM

• Use memcached as a cache layer for commonly-accessed data

• On memcache miss, fetch the data from the database,
otherwise retrieve from memcached servers



How Can You Start?

• Pick a language
• Ruby on Rails
• Django (Python)

• Learn JavaScript as necessary
• Start with JQuery

• Put together something simple and iterate



Resources

• Websites
• Best Practices for Speeding Up Your Web Site
• Frontend Development Guidelines
• JavaScript Garden

• Books
• Eloquent JavaScript
• Agile Web Development with Rails
• Ruby on Rails Tutorial Book

• Blogs
• ORM is an anti-pattern

http://developer.yahoo.com/performance/rules.html
http://taitems.github.com/Front-End-Development-Guidelines/
http://bonsaiden.github.com/JavaScript-Garden/
http://eloquentjavascript.net/
http://pragprog.com/book/rails4/agile-web-development-with-rails
http://ruby.railstutorial.org/ruby-on-rails-tutorial-book
http://seldo.com/weblog/2011/06/15/orm_is_an_antipattern


My Website

• http://www.davehking.com

• (slides posted tonight)

http://www.davehking.com

	Introduction
	Web Applications
	Making it Work
	Making it Great
	Making The Client Awesome
	Making The Server Awesome
	Making The Data Store Awesome
	Starting Out

